viernes, 10 de febrero de 2017




MEDIDAS DE TENDENCIA CENTRAL,DE DISPERSIÓN y DISTRIBUCIÓN.

Es un valor representativo, las medidas de dispersión nos dicen hasta qué punto estas medidas de tendencia central son representativas como síntesis de la información. Las medidas de dispersión cuantifican la separación, la dispersión, la variabilidad de los valores de la distribución respecto al valor central. Distinguimos entre medidas de dispersión absolutas, que no son comparables entre diferentes muestras y las relativas que nos permitirán comparar varias muestras.
LA DISPERSIÓN: Al igual que sucede con cualquier conjunto de datos, la media, la mediana y la moda sólo nos revelan una parte de la información que necesitamos acerca de las características de los datos. Para aumentar nuestro entendimiento del patrón de los datos, debemos medir también su dispersión, extensión o variabilidad.
·         Proporciona información adicional que permite juzgar la confiabilidad de la medida de tendencia central. Si los datos se encuentran ampliamente dispersos, la posición central es menos representativa de los datos.
·         Ya que existen problemas característicos para datos ampliamente dispersos, debemos ser capaces de distinguir que presentan esa dispersión antes de abordar esos problemas.
·         Quizá se desee comparar las dispersiones de diferentes muestras. Si no se desea tener una amplia dispersión de valores con respecto al centro de distribución o esto presenta riesgos inaceptables, necesitamos tener habilidad de reconocerlo y evitar escoger distribuciones que tengan las dispersiones más grandes.
MEDIDAS DE DISPERSIÓN.

DESVIACIÓN ESTÁNDAR: es una medida que informa sobre la media de distancias que tienen los datos respecto de su media Aritmética, expresada en las mismas unidades que la variable.

LA VARIANZA: Es el valor de la desviación estándar al cuadrado; su utilidad radica en que su valor es requerido para todos los procedimientos estadístico.

ERROR TÍPICO: Llamado también error estándar de la media. Se refiere a una medida d variabilidad de la media; sirve para calcular cuan dispersa estaría la media de realizar un nuevo cálculo.

El conocimiento de la forma de la distribución y del respectivo promedio de una colección de valores de una variable, puede servir para tener una idea bastante clara de la conformación, pero no de de la homogeneidad de cada una de los valores con respecto a la medida de tendencia central aplicada.
A estos indicadores les llamamos medidas de dispersión, por cuanto que están referidos a la variabilidad que exhiben los valores de las observaciones, ya que si no hubiere variabilidad o dispersión en los datos interés, entonces no habría necesidad de la gran mayoría de las medidas de la Estadística descriptiva.
Las medidas de tendencia central tienen como objetivo el sintetizar los datos en un valor representativo, las medidas de dispersión nos dicen hasta que punto estas medidas de tendencia central son representativas como síntesis de la información. Las medidas de dispersión cuantifican la separación, la dispersión, la variabilidad de los valores de la distribución respecto al valor central. Distinguimos entre medidas de dispersión absolutas, que no son comparables entre diferentes muestras y las relativas que nos permitirán comparar varias muestras.
MEDIDAS DE TENDENCIA CENTRAL

MEDIA: Media Aritmética, es la que se obtiene sumando los datos y dividiéndolos por el número de ellos. Se aplica por ejemplo para resumir el número de pacientes promedio que se atiende en un turno. Otro ejemplo, es el número promedio de controles prenatales que tiene una gestante.

MEDIANA: Corresponde al 50%. Es decir, la mediana divide a la población exactamente en dos..

MODA: Valor o (valores) que aparece(n) con mayor frecuencia.

DISTRIBUCIÓN DE FRECUENCIAS:

Las distribuciones de frecuencias son tablas en que se dispone las modalidades de la variable por filas. En las columnas se dispone el número de ocurrencias por cada valor, porcentajes, etc. La finalidad de las agrupaciones en frecuencias es facilitar la obtención de la información que contienen los datos.
f: Frecuencia (también se simboliza como ni).

La distribución de frecuencias de los datos del ejemplo muestra que la actitud mayoritaria de los individuos del grupo estudiado es indiferente.

No hay comentarios.:

Publicar un comentario